扫描电子显微镜观察中的磁性材料
发布日期:2021-11-12 09:11
来源:网络
作者:林中清
浏览次数:
1.磁性的来源
物质的磁性源自物质原子中电子和原子核的磁矩。原子核的磁矩很小可以忽略,故物质的磁性取决于“电子磁矩”。电子的磁矩源自电子运动,电子的轨道运动形成“轨道磁矩”,自旋运动形成“自旋磁矩”。在充满电子的壳层中,电子的在轨运动占满了所有可能方向,各种方向的磁矩相互抵消,因此总角动量为零。我们在考虑物质磁性时只需考虑那些未填满电子的壳层,称为“磁性电子壳层”。物质对外显现磁性的状态,也取决于这个磁性电子壳层的状况。
2.磁性的分类
因为物质的磁性源自原子中电子运动所形成的磁矩,因此任何物质都存在着电子的轨道运动和自旋运动,都存在着磁矩。依据电子填充核外电子轨道的情况按大类分为:反磁(抗磁)、顺磁、铁磁,这三大类磁性物质。
反磁性与反磁性物质:
反磁性也称为抗磁性。定义为:在外加磁场的作用下,电子的在轨运动会产生附加转动(Larmor进动),动量矩将发生变化,产生与外磁场相反的感生磁矩,表现出“反磁性”。应该说所有的物质进入磁场都会表现出反磁的特性。反磁性物质:当物质的原子核外电子充满所有轨道时,无论是单质还是配合物所形成的杂化轨道,电子各向磁矩都将完全的相互抵消,因此该类物质在进入磁场后电子只表现出反磁特性。称为反磁性物质。
顺磁性物质:
物质的分子或原子中含有未成对电子,这些电子的磁矩在各自的原子和分子中无法完全抵消。而热扰动的影响使原子和分子间的未成对电子无序排列,造成个体磁矩的互相抵消,最终合磁矩为零,物质整体对外不显磁性。物体进入磁场后,未成对电子将受磁场作用而趋向磁场排列,同时热扰动的作用使其趋向混乱排列,但综合结果是在磁场方向产生一个磁矩分量,对外表现出磁性,低温会使得磁矩分量加强。常温下拆除磁场后,热扰动的作用会使这些单电子重归无序排列,合磁矩归零,对外不表现磁性。
顺磁物质按照磁性强弱可粗分为:弱顺磁、顺磁、超顺磁。“弱顺磁”物质进入磁场,对外表现出的磁性极弱,需极精密设备才能测出。“超顺磁”物质靠近磁场后,表现出的磁性极强接近铁磁。普通顺磁材料的磁性介于两者之间。
顺磁物质大致包括以下几大类:过渡元素、稀土元素、还有铝、铂等金属,氮的氧化物、稀土金属的盐,玻璃,水,非惰性气体等等。
铁磁性物质:
铁磁性物质相对于顺磁性物质,在原子核外的电子轨道上有更多未配对电子。这些未配对电子的自旋方向趋同,形成所谓的 “磁畴”。 “磁畴”可认为是同方向电子的集合,由其形成的“饱和磁矩”要远大于单电子形成的磁矩。铁磁性物质各原子或配合物所形成的磁畴,相互之间大小和方向都不相同。如同顺磁性物质一样,在热扰动影响下这些磁畴杂乱排列,最后形成的合磁矩为零。
当铁磁物质进入磁场,这些磁畴在磁场影响下趋向沿磁场方向的趋同排列,而热扰动影响下的杂乱排列趋势相对磁场对磁畴的影响要小很多,故该物质进入磁场后表现出的合磁矩比顺磁性物质要强大得多。当外加磁场达到一定值(饱和值),移除磁场影响后,常规的热扰动无法使得这些磁畴回归无序排列状态,合磁矩保持进入磁场的强度,物质对外继续保持被磁化的状态。该现象被称为“磁滞”现象。“磁滞”现象最先在铁器上被发现,故该磁特性被称为“铁磁性”,过渡族金属及其合金和化合物都具有这种特性。
高温(500-600度)所形成的热扰动才会使得处于“磁滞”状态的磁畴重新回归无序排列,这就是高温消磁的原理。交变磁场消磁器也能打乱磁畴的有序排列,但是效果最佳、消磁最彻底的方法,还是高温消磁。
物质的磁性来自它们原子核外电子的运动,严格来说所有的物质都带有磁性。依据物质进入磁场后对外所表现出来的磁性可分为:反磁、顺磁以及铁磁性材料。顺磁性材料依据磁性强弱可粗分为弱顺磁、顺磁、超顺磁。反磁或弱顺磁材料进入磁场,对外不表现出磁性或表现出的磁性极其微弱(只有精密仪器才能测得);顺磁及超顺磁性材料进入磁场后会表现出较强的磁性;铁磁性材料不仅进入磁场表现出强磁性,离开磁场后还具有强烈的磁滞现象。
3.电镜与磁性物质
电子显微镜的光源是高能电子束,对电子束进行会聚的最佳方案是采用电磁透镜。因此在电镜中充满着各种磁场,不可避免会对进入磁场的那些易被磁化的样品产生影响。
高分辨扫描电镜为了帮助镜筒内探头获取更多的二次电子,基本上都采用半内透镜物镜设计,其优势在于兼顾面较为广泛。顺磁性、铁磁性样品只要保持一定工作距离且本身不带有磁性,测试效果与反磁性物质没有区别。
4.物质磁性评判
如何评判样品磁性的强弱是否适合进行扫描电镜检测。大多实验室采用以下方法:
(1)判定依据:把磁性样品等同于铁、钴、镍,并扩展为含铁、钴、镍的所有材料。
(2)利用磁铁:只要磁铁可以吸引,就被认为是磁性样品。
凡符合以上所罗列的样品,统统列为扫描电镜的禁测样品。实践证明,这种判断方式存在很大局限性。
通过前面的介绍我们知道,材料按磁性区分为反磁性、顺磁性、铁磁性物质。弱顺磁、反磁性物质进入磁场不会受到磁场影响,顺磁、超顺磁、铁磁性材料进入磁场会被磁化。一旦离开磁场,顺磁、超顺磁物质恢复原状,而铁磁性物质会表现出强烈的磁滞现象。
依据样品的磁特性和物镜的分类,样品磁特性对电镜测试的影响首先要考虑以下两种情况:样品本身带磁或不带磁。
(1)样品本身带磁:所有电镜都会受到影响。吸附污染镜筒、扰乱电子束影响测试结果,这些都是样品带磁的直接后果。可采用铁制品(薄铁片、大头针)来检测样品是否带磁。
(2)样品本身不带磁性:物镜采用内透镜模式,测试时用磁铁检测样品是否为顺磁材料,如磁铁能吸引该样品,则不可测;物镜是半内透镜模式,大工作距离(WD>8mm)测试无限制,小工作距离测试,则需如上检测其顺磁性;外透镜物镜模式,理论上不受工作距离影响。
其次,样品的合磁矩会随着物体体积的改变而发生变化,体积越小合磁矩越微弱。这是量变到质变的关系,因此对于外透镜和半内透镜模式设计的扫描电镜,可采用以下的方式对测试样品进行筛选,并选用与之相匹配的样品处理方式。
(1)直径在两、三百纳米以下的小颗粒,合磁矩总量极其微弱,一般不会对测试工作产生太大的影响。充分的分散、采用稍大一些的工作距离,即可放心测试。这类小颗粒材料的堆积体容易使得合磁矩增加,松散的堆积与基底结合不牢,易受电子束轰击溅射并吸附在镜筒上。达一定值,会对仪器性能产生影响,特别是磁性稍强一些的纳米颗粒。故制样时,应极力避免堆积体的形成。
(2)微米级别颗粒所形成的合磁矩就应当引起重视。充分的固定和远离镜筒(WD>8mm)是保证样品测试的关键。
绝大部分情况:合磁矩较大的样品,所需观察的表面细节都较大,采用样品仓探头在大工作距离(15mm)下观察,获取的样品信息将会更加充分。固定、分散好样品,控制好工作距离,只要样品本身不带磁(铁片试),进行SEM测试基本都不会有问题。
5.强磁样品的SEM测试
磁性较强的样品应当排除采用内透镜物镜设计的扫描电镜对其进行测试。下面的讨论主要针对外透镜和半内透镜。
(1)外透镜物镜模式
该物镜模式的扫描电镜,无论物质具有铁磁或是顺磁特性,只要未被磁化,理论上可以在任何位置进行测试。
但是样品最好能被充分固定,特别是粉末样品,更要保证每一个颗粒都有很好的固定。否则小工作距离观察,粉末颗粒在电子束轰击下,也容易溅射进镜筒对磁场产生干扰。
(2)半内透镜物镜模式
这类物镜模式由于有部分磁场外泄,因此样品必须远离物镜观察。具体工作距离依据样品合磁矩大小的不同而不同,一般来说大于8mm工作距离是比较安全的。其他操作和外透镜模式基本相同,只是固定必须加强。对于大型块状物体建议使用夹持台,以保证测试的安全。如果发现有像散消除不掉的现象,基本说明样品被磁化,可通过高温或消磁器进行消磁处理来排除磁场干扰。铁磁性、顺磁性物质的细节一般都在几十纳米以上,大工作距离下采用样品仓探头观察,将呈现更为丰富的样品信息。
小工作距离、镜筒探头组合,适合观察松软样品的几纳米细节信息,拥有这种特性及细节的样品,基本都是反磁或弱顺磁样品,漏磁对其不产生影响。
6.总结
物质的磁性主要来自于核外电子的在轨运动,因此所有物质都具有一定磁性。反磁性物质由于核外不存在未成对电子,无论是否进入磁场,其合磁矩都为零,对外不表现出磁性。主流观点认为: 外透镜模式适合磁性材料观察,半内透镜模式适合样品的高分辨观察。该观点有失偏颇。其存在的根源是基于两个错误概念:
(1)小工作距离才能获得高分辨像,并引伸为是进行扫描 电镜高分辨测试的基本选择。
(2)磁性材料才有磁性,且一定会被半内透镜物镜所磁化。
实际测试中,样品会有如下表现:
(1)样品被磁化:无论哪种物镜模式都不会获得满意的结果。电子束都会被干扰,也都有可能被吸到物镜中去。
(2)样品未被磁化:理论上外透镜物镜模式对样品进行测试可不受限制;半内透镜物镜模式,样品需在大工作距离下测试。
工作距离和图像分辨力之间并非是一种单调的变化关系。需要获取的样品表面信息细节大于20纳米,采用大工作距离、样品仓探头组合反而有更高的图像分辨力。
顺磁性、铁磁性物质的表面细节都较粗,在大工作距离下测试,获得的结果更充分,细节分辨更优异。因此这类样品更适合在大工作距离下采用样品仓探头来观察。
大工作距离测试对于扫描电镜来说极为关键。它不仅能给我们带来更多的样品信息,还充分扩展了应对疑难样品的操作空间。特别是对于磁性较强的样品,扫描电镜在大工作距离测试时的分辨能力越强大,获取的样品表面信息就越充分。
-
水蒸气蒸馏提取挥发油
2018-01-11
水蒸气蒸馏(steam distillation)是分离纯化液体或固体 化合物 的常用方法之一。 (1)水蒸气蒸馏的 应用 范围和条件 水蒸气蒸馏适用于以下情况:...
-
读懂天然产物系列——抗生素
2016-06-19
以下文章转载自小木虫 swaucq 文献 Hamamoto, H.; Urai, M.; Ishii, K.; Yasukawa, J.; Paudel, A.; Murai, M.; Kaji, T.; Kuranaga, T.; Hamase, K.; Katsu, T.; Su, J.; Adachi, T...
-
反相液相色谱的选择,使用及
2014-09-25
反相柱填料主要以硅胶为基质,在其表面键合非极性的十八烷基官能团(ODS)称为C18柱,其它常用的反相柱还有C8,C4,C2和苯基柱等。另外还有离...
-
读懂天然产物系列——天然产
2016-06-13
以下文章转载自小木虫 笑玄97 天然产物的研究发现之路漫长而修远,你我求索于其中孜孜不悔;顾盼回首,我们究竟走了多远?本帖所述文...